< News

New evidence for the protective role of the microbiome in early life


A new study has provided insights into how microbes protect gut health from the moment of birth.

Researchers at the Quadram Institute and the University of East Anglia found that in very young mice, the cells lining the gut receive protection from inflammatory damage by their gut microbes and metabolites these produce. This protection appears to be lost with age as the microbiome composition changes. A better understanding of the interactions between microbes, the gut lining and the immune system will be vital in the search for therapies for chronic diseases linked to the gut.

The population of microbes, known as the microbiome, plays an important role in maintaining health from birth, when they first colonise, and then as we age. What happens in that very early colonising period is crucial as it can affect lifelong health. One important protective role that the microbiome plays is in helping ensure the lining of the gut is an effective barrier. A ‘leaky gut,’ where that barrier is compromised allowing microbes to cross, has been linked to many health conditions, including ulcerative colitis.

To keep the gut lining in tip-top condition, the body constantly replenishes the cells at the front line of the defence. Old cells are lost through a process called cell-shedding. This is usually highly controlled but in certain conditions there is an imbalance, leading to pathological cell-shedding and the development of related health conditions such as ulcerative colitis.

Previous work by Dr Lindsay Hall and colleagues highlighted the important role that the early gut microbiome plays in regulating cell shedding. Funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council, this new study aimed to link changes in the microbial profile during very early life with changes in cell shedding.

Published in the FASEB Journal, the study was carried out with mice, which are a well-established pre-clinical model for studies of the gut and the microbiome. They let researchers simulate conditions, for example pathological cell shedding. However, in newborn mice, the researchers were surprised to find that cell shedding couldn’t be triggered in the normal way. Neonatal mice appeared to be resistant to induced cell shedding, which protected their gut barrier. But by adulthood, the cell-shedding response was as expected and the gut integrity of the gut barrier had broken down.

For more information, see the full article here.